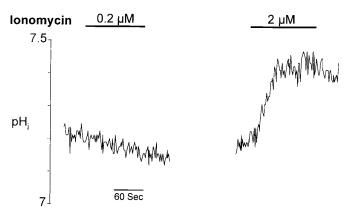
# Effect of Ionomycin on Cell pH in Isolated Renal Proximal Tubules

Hideomi Yamada, George Seki,¹ Shigeo Taniguchi, Shu Uwatoko, Keiji Suzuki,\* and Kiyoshi Kurokawa

First Department of Internal Medicine, Tokyo University School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan; and \*Health Service Center, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu City, Tokyo 183, Japan

Received June 24, 1996

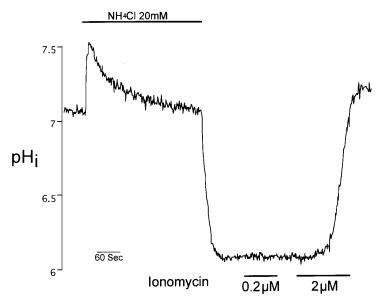

In isolated rabbit proximal tubules the addition of  $2.0~\mu M$  but not  $0.2~\mu M$  ionomycin induced a sustained increase in cell pH ([pH]<sub>i</sub>). This [pH]<sub>i</sub> response to  $2.0~\mu M$  ionomycin was shown to be independent of several transporters such as Na<sup>+</sup>/H<sup>+</sup> exchanger, Na<sup>+</sup>-HCO<sub>3</sub><sup>-</sup> cotransporter, Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup> exchanger, or H<sup>+</sup>-ATPase. On the other hand, the removal of extracellular Ca<sup>2+</sup> abolished the [pH]<sub>i</sub> increase or even induced a transient [pH]<sub>i</sub> decrease in the presence of ionomycin. These results are consistent with the induction of Ca<sup>2+</sup>/H<sup>+</sup> exchange by ionomycin. Therefore Ca<sup>2+</sup> ionophores should be used with caution as probes to estimate renal tubule functions. © 1996 Academic Press, Inc.

Renal proximal tubules reabsorb more than 70 % of the filtered HCO $_3$ , and this process is under control of several hormones such as angiotensin II and parathyroid hormone (1, 2, 3). It is quite reasonable to speculate that, in addition to cAMP-dependent pathway, changes in intracellular calcium concentrations ( $[Ca^{2+}]_i$ ) are also involved in these hormonal regulations. However, the exact influence of  $[Ca^{2+}]_i$  changes on proximal functions are not completely clarified, and both stimulatory and inhibitory effects of the increase in  $[Ca^{2+}]_i$  on proximal reabsorption have been reported (4, 5). To gain insight into this controversial issue, we examined the effect of ionomycin on steady state cell pH (pH $_i$ ) in isolated, lumen-collapsed proximal tubules. In this preparation the major determinant of pH $_i$  would be basolateral Na $^+$ -HCO $_3^-$  cotransporter (6), which is reported to be inhibited by calcium-calmodulin-dependent protein kinase II in a previous study using basolateral membrane vesicles (7).

## MATERIALS AND METHODS

The experiments were performed on isolated proximal tubules (superficial S2 segment) from female New Zealand white rabbits (1.5 ~ 2.5 Kg body wt), and only non-perfused, lumen-collapsed tubules were used as previously described (8). Fura 2 was used to measure [Ca<sup>2+</sup>]<sub>i</sub> as previously reported (9), and pH<sub>i</sub> was measured with bis(carboxyethyl)carboxyfluorescein (BCECF). Tubules were loaded with either fura 2/AM (20  $\mu$ M) or BCECF/AM (15  $\mu$ M), and [Ca2+]i or pHi were measured using a microscopic fluorescence photometry system (OSP-10, Olympus, Japan) with appropriate excitation and emission wavelengths. The calibration for  $[Ca^{2+}]_i$  was made according to the equation of Grynkiewicz et al. (10), and that for pHi was made according to the method by Thomas et al. (11). After the incubation period, tubules were perfused peritubularly with prewarmed (38 °C) experimental solutions. The following solutions were used (in mM): standard HCO<sub>3</sub><sup>-</sup> buffer (115 NaCl, 5 KCl, 1 MgCl<sub>2</sub>, 1.5 CaCl<sub>2</sub>, 1 Na<sub>2</sub>SO<sub>4</sub>, 2 NaH<sub>2</sub>PO<sub>4</sub>, 25 NaHCO<sub>3</sub>, 5.5 glucose), Cl<sup>-</sup>-free HCO<sub>3</sub>- buffer (Cl<sup>-</sup> in standard-HCO<sub>3</sub> buffer solution was replaced with gluconate, and 5.0 Ca(gluconate)<sub>2</sub> was used), standard N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic (HEPES)-buffer (127 NaCl, 5 KCl, 1 MgCl<sub>2</sub>, 1.5 CaCl<sub>2</sub>, 1 Na<sub>2</sub>SO<sub>4</sub>, 2 NaH<sub>2</sub>PO<sub>4</sub>, 12 HEPES, 13 Na-HEPES, 5.5 glucose), Na<sup>+</sup>-free HEPESbuffer (Na<sup>+</sup> in standard-HEPES buffer solution was replaced with N-methyl-D-glucamine). pH of these solutions were adjusted to 7.4 either by bubbling with 5 % O<sub>2</sub>/95 % CO<sub>2</sub> gas (HCO<sub>3</sub>-buffer solutions), or by 1N NaOH (HEPESbuffer solutions). Fura 2/AM and BCECF/AM were obtained from Dojindo Chemical, Japan, and ionomycin, 4, 4'diisothiocyanatostilbene-2, 2'-disulphonic acid (DIDS), amiloride, and iodoacetic acid (IAA) were from Sigma Chemi-

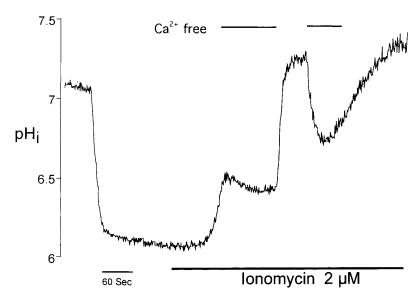
<sup>&</sup>lt;sup>1</sup> To whom reprint requests should be addressed. Fax: 81-3-3812-5063.




**FIG. 1.** Effect of ionomycin on  $pH_i$  in lumen-collapsed tubules. Tubules were perfused peritubularly with the standard  $HCO_3^-$ -buffer solution, and different concentrations of ionomycin were added as indicated.

cal Co, USA, ethylene glycol-bis( $\beta$ -aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) was from Fluka, Germany, and all the other chemicals were from WAKO, Japan.

## **RESULTS**


In the standard HCO<sub>3</sub>-buffer solution, the addition of 0.2  $\mu$ M ionomycin increased  $[Ca^{2+}]_i$  by 190  $\pm$  70 nM (mean  $\pm$  S.E.M., n = 6) in a reversible manner. On the other hand, the addition of 2  $\mu$ M ionomycin increased [Ca<sup>2+</sup>]<sub>i</sub> by more than 2000 nM, and this increase was often irreversible at all or only partially reversible (n = 5). As shown in Fig. 1, while 0.2  $\mu$ M ionomycin did not affect the steady state pH<sub>i</sub> in the standard  $HCO_3^-$ -buffer solution, 2.0  $\mu$ M ionomycin irreversibly increased pH<sub>i</sub> by 0.26  $\pm$  0.06 pH unit (n = 4). In the tubules incubated in the Cl<sup>-</sup>-free HCO<sub>3</sub>-buffer solution for more than 15 min, 2.0  $\mu$ M ionomycin elicited a comparable cell alkalinization ( $\Delta$ pH<sub>i</sub>: +0.18  $\pm$  0.02 pH unit, n = 3). Treatment with 0.5 mM DIDS also did not inhibit the pH<sub>i</sub> response to 2.0  $\mu$ M ionomycin ( $\Delta$ pH<sub>i</sub>: +0.30  $\pm$  0.09 pH unit, n = 4). These results suggest that the effect of this ionophore on pH<sub>i</sub> may not come from the changes in activities of Cl<sup>-</sup> /HCO<sub>3</sub> exchanger or Na<sup>+</sup>-HCO<sub>3</sub> cotransporter. To further examine the mechanism of pH<sub>i</sub> increase by ionomycin, we incubated the tubules in the standard HEPES-buffer solution containing 20 mM NH<sub>4</sub>Cl for 5 min. As shown in Fig. 2, the removal of NH<sub>4</sub>Cl induced a profound cell acidification, and pH<sub>i</sub> stayed at a very low level (usually below 6.5) for up to 15 min in the Na<sup>+</sup>-free HEPES-buffer solution. In these tubules the addition of 0.2 μM ionomycin did not affect the steady state pH<sub>i</sub> level. However, 2.0 μM ionomycin induced a marked pH<sub>i</sub> increase, and in 4 of 4 tested tubules pH<sub>i</sub> reached the pre-NH<sub>4</sub>Cl level (~ 7.2) within 3 min in the absence of extracellular Na<sup>+</sup>. The addition of 1 mM amiloride did not affect this pH<sub>i</sub> recovery (n = 4), ruling out the involvement of Na<sup>+</sup>/H<sup>+</sup> exchanger. Tubule treatment with 2 mM cyanide plus 2 mM IAA (n = 4), which should significantly suppress the metabolism in this segment (12), also did not modify the pH<sub>i</sub> response to 2.0 µM ionomycin. Similarly, the pH<sub>i</sub> response was unaffected either with 2 mM N-ethylmaleimide (n = 4) or 1  $\mu$ M bafilomycin A<sub>1</sub> (n = 7), indicating that the involvement of a vacuolar-type H<sup>+</sup>-ATPase is unlikely (13, 14). On the other hand, ionomycin did not induce the pH<sub>1</sub> increase in the absence of extracellular  $Ca^{2+}$  (n = 2). Furthermore, the removal of extracellular Ca<sup>2+</sup> promptly abolished the pH<sub>i</sub> increase in the presence of 2.0  $\mu$ M ionomycin, or even induced a transient pH<sub>i</sub> decrease as shown in Fig. 3.



**FIG. 2.** Effect of ionomycin on pH<sub>i</sub> in HCO $_3$ -free solutions. The tubule was first incubated with the standard HEPES-buffer solution containing 20 mM NH $_4$ Cl (substituted for NaCl) for 5 min. Subsequently, the bath solution was changed to the Na $^+$ -free HEPES-buffer solution, inducing a profound decrease in pH<sub>i</sub>. Note 2.0  $\mu$ M but not 0.2  $\mu$ M ionomycin induced a marked pH<sub>i</sub> recovery.

## DISCUSSION

In the present study we observed that the  $[Ca^{2+}]_i$  increase within physiological ranges by 0.2  $\mu M$  ionomycin did not affect steady state  $pH_i$  in isolated proximal tubules. On the other



**FIG. 3.** Effect of extracellular  $Ca^{2+}$  removal on the ionomycin-induced  $pH_i$  increase. The tubule was acidified as in Fig. 2, then extracellular  $Ca^{2+}$  was removed ( $Ca^{2+}$ -free plus 0.1 mM EGTA) in the presence of 2.0  $\mu$ M ionomycin as indicated. A representative trace from three similar experiments is shown.

hand, 2.0  $\mu$ M ionomycin, while inducing the supra-physiological [Ca<sup>2+</sup>]<sub>i</sub> increase, elicited the sustained increase in pHi. Additional experiments indicated that the changes in activities of known transporters such as Na<sup>+</sup>-HCO<sub>3</sub><sup>-</sup> cotransporter, Na<sup>+</sup>/H<sup>+</sup> exchanger, Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup> exchangers, or H<sup>+</sup>-ATPase (proton pump) cannot explain this pH<sub>i</sub> increase. On the other hand, the pH<sub>i</sub> response to ionomycin was not only promptly abolished, but its direction was even reversed by the extracellular Ca<sup>2+</sup> removal. These observations strongly suggest that the pH<sub>i</sub> response to 2.0  $\mu$ M ionomycin is due to the induction of Ca<sup>2+</sup>/H<sup>+</sup> exchange by the ionophore. It has been known that, in addition to Ca<sup>2+</sup> releasing effects from the intracellular Ca<sup>2+</sup> stores, high concentrations of Ca<sup>2+</sup> ionophores can catalyze electroneutral divalent cation transport, i.e.  $Ca^{2+}/2H^{+}$  exchanger (15, 16). In native tissues  $pH_{i}$  responses to the  $Ca^{2+}$  ionophores are quite variable depending on cell types or experimental conditions. However, Asem et al. reported that in chicken granulosa cells the Ca<sup>2+</sup> ionophores such as ionomycin and 4-Bromo-A23187 induced a similar cytosolic alkalinization, which required extracellular Ca<sup>2+</sup> but not extracellular Na<sup>+</sup> (17). Our results extend the observations by Asem et al. (17), and suggest that higher concentrations of ionomycin, while elevating [Ca<sup>2+</sup>]<sub>i</sub> to the supra-physiological ranges, could induce the artificial cation exchange in isolated proximal tubules. Therefore, caution must be exercised when the Ca<sup>2+</sup> ionophores were to be used as probes to investigate the role of Ca<sup>2+</sup> in acid-base transport in renal tubules.

## **ACKNOWLEDGMENTS**

We thank Miss M. Kaneko for her skillful technical assistance. This work was supported in part by Grant 05404041 from the Ministry of Education, Science and Culture of Japan.

## REFERENCES

- 1. Harris, P. J., and Young, J. A. (1977) Pflügers Arch. 367, 295–297.
- 2. Geibel, J., Giebisch, G., and Boron, W. F. (1990) Proc. Natl. Acad. Sci. USA 87, 7917-7920.
- 3. Iino, Y., and Burg, M. B. (1979) Am. J. Physiol. 236, F387-F391.
- 4. Liu, F. Y., and Cogan, M. G. (1990) Am. J. Physiol. 259, F451-F457.
- 5. Wang, T., and Chan, Y. L. (1990) Pflügers Arch. 415, 533-539.
- 6. Seki, G., Coppola, S., and Frömter, E. (1993) Pflügers Arch. 425, 409-416.
- 7. Ruiz, O. Z., and Arruda, J. A. L. (1992) Am. J. Physiol. 262, F560-F565.
- 8. Seki, G., Taniguchi, S., Uwatoko, S., Suzuki, K., and Kurokawa, K. (1993) J. Clin. Invest. 92, 1229-1235.
- Yamada, H., Seki, G., Taniguchi, S., Uwatoko, S., Suzuki, K., and Kurokawa, K. (1996) Am. J. Physiol. 270, C1096—C1104.
- 10. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440-3450.
- 11. Thomas, J. A., Bushsbaum, R. N., Zimnick, A., and Racke, F. (1979) Biochemistry 18, 2210-2218.
- 12. Krapf, R., Alpern, R. J., Rector, F. C., and Berry, C. A. (1987) J. Gen. Physiol. 90, 833-853.
- 13. Bowman, E. J., Siebers, A., and Altendorf, K. (1988) Proc. Natl. Acad. Sci. USA 85, 7972-7976.
- 14. Jehmlich, K., Sablotni, J., Simon, B. J., and Burckhardt, G. (1991) Kidney Int. 40, S64-S70.
- 15. Reed, P. W., and Lardy, H. A. (1972) J. Biol. Chem. 247, 6970-6977.
- 16. Kauffman, R. F., Taylor, R. W., and Pfeiffer, D. R. (1980) J. Biol. Chem. 255, 2735-2741.
- 17. Asem, E. K., Li, M., and Tsang, B. K. (1992) J. Mol. Endocrinol. 9, 1-6.